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Dissipation, geometry, and the stability of the dense radial morphology

David G. Grier and Daniel Mueth
The James Franck Institute, The University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637
(Received 28 June 1993)

The dense radial morphology appears in a number of systems undergoing branched growth. Neither
ordered nor fractal, this pattern is characterized by a large number of branches radiating from a central
seed and advancing behind a circular envelope. We propose a model for dense radial growth which self-
consistently incorporates dissipation in the growth channels. A linear stability analysis of this model
delimits conditions under which the dense radial morphology can develop. Predictions of this model are
borne out by numerical simlations of evolving resistor bond networks.

PACS number(s): 68.70.+w, 47.54.+r, 61.43.Bn

I. DISSIPATION IN DIFFUSIVE
PATTERN-FORMING SYSTEMS

Dissipation arises in most pattern-forming systems.
Patterns developing in fluid flows dissipate energy
through the fluids’ viscosities. Electrochemical deposi-
tion is subject to Ohmic dissipation and to losses from
convective motion of the electrolyte. Lightning bolts ex-
pend their energy in creating and heating a plasma whose
expansion produces thunder. In these and other cases,
dissipation alone does not govern the evolution of form.
It can, however, qualitatively influence the outcome.

We shall confine our attention to patterns such as Fig.
1 in which fine branches radiate from a central seed and
whose growth requires a current to flow along the
branches. Such systems have been studied extensively
over the past 30 years and produce both regular and lush-
ly disordered patterns. Over some range of experimental
parameters, many such systems produce well-developed
stochastic fractals resembling diffusion-limited aggrega-
tion (DLA) [1,2]. The example in Fig. 1 is striking pre-
cisely because it is not fractal. Despite its random
branching, it has a uniform areal density and is cir-
cumscribed by a smooth circular envelope. This shape
has been dubbed the dense radial morphology [3,4] and
its origin has been the subject of some dispute.

Previous analyses [5,6] of dissipation’s role in forming
dense morphologies have relied on two assumptions.
Dissipation was treated as a contribution to the boundary
condition at the interface between the advancing and re-
treating media. Currents within the advancing medium,
furthermore, were assumed to flow strictly radially along
the branches. Indeed, if this condition were relaxed and
azimuthal currents allowed, the interfacial boundary con-
dition would no longer be self-consistent.

The assumption that currents flow preferentially along
branches seems appropriate to electrochemical deposi-
tion. In this system, growth proceeds through the accre-
tion of ions onto an electrode. Ions flow to growth sites
through an electrolytic solution and their charge is car-
ried away as an electric current passing through the ag-
gregate. Not only are metallic branches better conduc-
tors than electrolytic solutions, but also Fukunaka,
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Yamamoto, and Kondo have demonstrated that the solu-
tion between branches is depleted of charge carriers [7].
Viscous fluids injected into porous media similarly might
have their flows constrained by fluid trapped in inter-
stices [8,9]. Melrose and Hibbert [10], however, have
shown that such anisotropy is not complete in electro-
chemical deposition. The appearance of closed loops in
viscous flows through porous media indicate the limits of
anisotropy for that system also [11,12]. Any effort to as-

FIG. 1. Quasi-two-dimensional cadmium electrodeposit
grown according to the method of Refs. [3,4]. The pattern is
approximately 2 cm in diameter and 200 pum thick. It grew
from a grounded cathode wire 0.1 mm in diameter. The outer
ring anode, not visible in this picture, is 6.3 cm in diameter and
was held at 20.26 V during the deposition. A film of 0.1M
CdSO, aqueous solution provided the growth medium.
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cribe the stability of the dense radial morphology to dissi-
pation in the growth channels must treat the local struc-
ture and currents with some care.

In Sec. 11, we introduce a simple yet realistic model for
branched growth with dissipation. A linear stability
analysis of this model predicts a nontrivial crossover
from highly unstable, presumably branched interfaces to
interfaces which are linearly stable at long wavelengths,
as a function of growth conditions. These latter inter-
faces we identify with the dense radial morphology. This
model also suggests that initially disordered aggregates
can undergo a dynamic morphology transition into uni-
form dense radial aggregates if their conductivity is
sufficiently anisotropic. Under a more restricted set of
conditions, some stable aggregates can become unstable
once again as they approach the bounds of their system.
In Sec. III we test these ideas through numerical simula-
tions of evolving resistor bond networks.

II. MODELING DISSIPATIVE GROWTH CHANNELS

A. Equations of motion

For simplicity, we will consider radial growth in two
dimensions, although the approach can be generalized to
three dimensions. Figure 2(a) depicts the radial variant
of the model geometry. If we assume that the advancing
medium has already formed a dense radial structure of
radius 7, then its envelope advances under the control of
local currents, j;, with a normal velocity:
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FIG. 2. Schematic diagram of the radial (a) and planar (b)
growth geometries. The labeled quantities are described in the
text.
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vo=bﬁ-j,-|,:,0 . (1)

The subscript i denotes either the advancing (i =1) or re-
treating (i =2) medium, and b is a system-dependent ma-
terial parameter. Currents in turn arise from gradients of
the underlying field through constitutive relations:

ji=oVu; , )

whose conductivities, o;, describe dissipation mecha-
nisms. The sign convention in Egs. (1) and (2) is deter-
mined by the particular system. Since this convention
also determines signs in the boundary conditions, the re-
sults are unaffected.

We assume that the conductivity in the retreating
medium, o,, is homogeneous and isotropic. To account
for the inhomogeneity of the advancing medium, we treat
its conductivity as a tensor. The simplest model
reflecting a radially branched structure is

o, 0
71= 0 Og (3)

in polar coordinates, where o, and o, are constants.
Equation (3) simply states that currents flow with
different ease along and between the radially directed
branches. The size, separation, and detailed geometry of
the branches arise from a variety of system-dependent
mechanisms [13,14]. Some of these effects also may affect
pattern formation at long length scales, for example in
electrochemical deposition where the interplay of drift,
diffusion, and hydrodynamic flows are particularly com-
plex. Since our aim is to elucidate the generic large-scale
features of the dense radial morphology, we will take the

" small-scale local structure to be given and ignore other

system-specific effects.

Conservation of the diffusion field in the quasistatic
limit yields the equation of motion within the advancing
medium

) 2 92
108 oy 2 o
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where y =1/0,/0, measures the conductivity anisotro-
py in the advancing medium. The field in the displaced
medium obeys Laplace’s equation in the quasistatic limit:

V2u,=0. (5

=0, (4)

The combined fields satisfy the following boundary condi-
tions:

u,(r,,0,t)=0, (6a)
u,(R,0,t)=1, (6b)
u(rg,0,t)=u,(rg,0,t), (6¢c)
J1(rg,0,8)=j,(rs,0,t) , (6d)

where 7, is the radius of the central boundary, R is the
radius of the enclosing boundary, and r; is the radius of
the interface at angle 6 and time ¢. A term describing
surface tension was not included in Eq. (6¢) as it would
have contributed only at short wavelengths, while we are
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concerned with the long-wavelength stability of the mor-
phology. Taking the quasistatic limit simplifies the calcu-
lations and permits direct comparison with the numerical
simulations which we will present below. The corre-
sponding assumption that the system has a long diffusion
length is not required to stabilize the dense radial pattern.
Rather, short diffusion lengths should tend to enhance
the stability [5]. Screening within the displaced medium,
which introduces another length scale into the problem,
also has been shown to induce morphological transitions
[15] but is not considered here.

B. Linear stability analysis

Without too much effort, we find that an initially circu-
lar interface with r,=r, preserves its shape under Egs.
(4)—(6) and advances at the rate

ro
nl|-2
rC

To determine the stability of this solution against arbi-
trary perturbations, we follow Mullins and Sekerka [16]
in noting that any such perturbation can be decomposed
into Fourier components, and calculate the growth rate
of each component independently. These growth rates
emerge as solutions to Egs. (4)—(6) for the perturbed cir-
cular boundary r, =ry+39,,exp(im8), which we calculate
to linear order in the infinitesimal amplitude, §,,. The in-
dex m refers to the Fourier component with m lobes. If
the normalized growth rate of the mth mode,
a,, =(d,, /8,, )rq /vy, is positive, then an infinitesimal m-
fold perturbation will grow sufficiently rapidly to become
evident within the finite duration of an experiment. If a,,
is negative, then the interface is stable against m-fold per-
turbations.

Solving Eqgs. (4)—(6) for a perturbed circular interface,
we find

-1
__bo, o

Yo=

R

ro

r

+

In (7

ro g,

a,=—1+mf,(ry), (8a)
where
Flro)= g1
m 707 tanh[my In(ry/r.)]+yEtanh[m In(R /ry)]
(8b)

In Eq. (8b) we have defined the conductivity contrast
&=0, /0, which is the reciprocal of the control parame-
ters defined in Refs. [5,6].

Typical representations of a,, appear in Fig. 3. The
first insight we draw from Eq. (8) and Fig. 3 is that the
moving interface is linearly stable at all wavelengths
when there is no conductivity contrast: a,,| e=1=—1L
Uniform stability of all models is not surprising under
these conditions. With no conductivity contrast, the in-
terface between the two media is simply a notational con-
venience. Thus the tip of a perturbation advances at the
same rate as a circular interface of radius ry+5,, while
its trough advances at the rate appropriate to the radius
ro—39,,. Since the interfacial velocity decreases with ra-
dius [Eq. (7)] the troughs overtake the peaks and the per-
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FIG. 3. Normalized growth rate of distortion modes predict-
ed in Eq. (8) for a system with x=r,/R =0.5 and r. /R =0.01.
Those modes with a,, <O are stable, while those with a,, >0 are
unstable. Curves are parametrized by conductivity contrast, &.
(a) Isotropic limit: ¥y =1. (b) Anisotropic limit: ¥ =0.01.

turbations shrink. Thus the fundamental stability of the
dense radial pattern arises simply from the geometry of
the system.

When o, <o0,, all modes are linearly stable and the in-
terface advances as a circle without branches. This cor-
responds to forcing a viscous fluid to displace an inviscid
one. The converse case, where o, > 0,, leads to a richer
phenomenology. If the conductivity contrast is large,
then all modes are linearly unstable and the interface de-
volves into disorder. Smaller contrasts, however, leave a
range of stable modes with mode numbers smaller than a
critical value, m.. This is the regime in which the dense
radial morphology appears. Stability of long-wavelength
modes accounts for the overall circular shapes of the
dense radial aggregates. Instability at high mode number
permits aggregates to have a large number of finely divid-
ed branches. The underlying assumptions in the model
about the geometry of the aggregates are self-consistent.

Patterns evolving according to Eq. (8) can pass through
two morphological transitions as they grow. To show
this, we examine the marginally stable mode number, m_,
for which a,,(r,)=0. Values of m_ are computed as real
roots of the transcendental equation

2]
mel])

ym +tanh {my In

ym —y tanh
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Plots of m, as a function of x =ry /R appear in Fig. 4 for
a variety of growth conditions.

In the limit of strong anisotropy [Fig. 4(b)], initially
unstable long-wavelength modes rapidly stabilize when
the aggregate reaches the nearly vertical marginal stabili-
ty curve. Under these conditions, instabilities have no
opportunity to grow and the aggregate is dense and radi-
ally symmetric essentially from its inception. Increasing
the conductivity contrast moves the marginal stability
line out to large radii so that early stage instabilities have
time to grow. Early growth perturbations disappear once
an aggregate passes the marginal stability line provided
that nonlinearities have not come to dominate the dy-
namics.

Qualitative evidence for such a crossover is provided
by experiments in electrochemical deposition in which in-
itially disordered aggregates develop into dense radial
structures as they grow. The disorder in early stage
growth is still evident in the lacunae near the center of
the aggregates such as the example in Fig. 1. Presumably
because disorder engendered in early growth can produce
strongly nonlinear dynamics, not all electrodeposits
grown in this regime are dense radial.

Referring once again to Fig. 4(b), we see that
sufficiently large conductivity contrasts render all modes
linearly unstable for aggregates of all sizes. Between the
limits of strong and weak conductivity contrast, however,
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FIG. 4. Marginally stable mode number as a function of ag-
gregate size. For a given size, perturbations with mode numbers
above a given curve are unstable, while all those below are
stable. Curves are parametrized by conductivity contrast, £. (a)
Isotropic limit: y=1. (b) Anisotropic limit: y=0.01. The
crossover from instability to stability at £=5 is predicted to
occur at such large radii that we expect nonlinearities to
overwhelm the linear stabilizing mechanism.
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there are some conditions for which the marginal stabili-
ty curve is nonmonotonic. Under such conditions, an ini-
tially disordered aggregate could cross over first into the
dense radial pattern and subsequently devolve into disor-
der as it grows. That such a two-stage dynamic morphol-
ogy transition has not been reported is not surprising as it
should occur over only a very limited range of experi-
mentally accessible parameters. Furthermore, few exper-
imental studies have focused on the evolution of long-
wavelength modes in the parameter regime of interest.

Weak anisotropy, y =1, removes virtually all of the
size dependence from the stability of modes, as can be
seen in Fig. 4(a). A dense aggregate growing under these
conditions will be stable at long wavelengths and should
have a uniform areal density. Indeed, dense radial flows
in porous media, which have a relatively small anisotro-
py, do not leave large gaps near their centers [17]. The
isotropic low-conductivity-contrast regime has been stud-
ied by real-space renormalization-group methods [18],
numerically [19], and experimentally [20]. Our results
are consistent with crossovers evident in these studies al-
though none investigated in detail the region of parame-
ter space which we have identified with morphological
crossovers. Also, these studies did not investigate the
mode number dependence of interfacial stability.

As a counterpoint to these results, we present analo-
gous calculations of a linear interface advancing in a pla-
nar geometry [Fig. 2(b)]. In this case, the interface ad-
vances at a rate

o.b

X

Vo= (10)

o
m+;?R—m)

and the spectrum of instabilities is found to be

k x4
roY o
ak= s (11)

GX
tanh(ykry)+y——tanh[k(R —ry)]
g2

where k is the wave number of the perturbation, o, is the
conductivity in the growth direction, and all other vari-
ables are defined as they were in the radial case. When
there is no mobility contrast, the interface is only margin-
ally stable at all wavelengths. If o, > 0,, then the linear
front is linearly unstable against perturbations at all
wavelengths regardless of the conductivity anisotropy.
This result differs qualitatively from the radial case and
emphasizes that the dense radial morphology arises not
only from dissipation in the growth channels, but also
from the geometry of the system as a whole.

Simulations of growth without anisotropy in the planar
geometry [17] show no evidence of long-wavelength sta-
bility. Experiments in quasi-two-dimensional electro-
chemical deposition between parallel line electrodes
sometimes evince linear growth fronts. It seems reason-
able to ascribe this observed stability to factors such as
short diffusion lengths ahead of the growth front which
have been shown to enhance stability at long wavelengths

(5.
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III. NUMERICAL SIMULATIONS

A. Evolving resistor-bond-network model

We have tested these ideas through numerical simula-
tions of resistor bond networks similar to those previous-
ly used to simulate dielectric breakdown [21] and viscous
flows [12,17,22]. Resistors are arranged on a triangular
lattice with boundary conditions imposed at the central
node and along a hexagonal border to model the outer
boundary conditions of Eq. (6b). The hexagonal outer
boundary is a circle in lattice metric and has a diameter
of 200 bonds in our simulations. The growing aggregate
and displaced medium are represented by bonds of con-
ductance C, and C,,, respectively. Conductivity anisot-
ropy is introduced by setting the conductance between
neighboring aggregate nodes which are not contiguous on
the same branch to C,. This arrangement is depicted in
Fig. 5. Although ¥ =1/C, /C, corresponds only roughly
to the conductivity anisotropy defined above, the insensi-
tivity of m_ to variations in y for small y suggests that
comparisons between the model and simulations in this
regime should be reasonable. Comparisons in the isotro-
pic limit, ¥ =1, similarly should be reasonable.

Before each growth step, local potentials throughout
the network are iteratively relaxed until Kirchoff’s law is
satisfied to better than 5 parts in 10* at each node. Thus
the simulations represent the quasistatic limit of the
growth model. At each step, one of the surface bonds is
randomly selected to grow with a probability proportion-
al to the current through that bond. This bond and its
node are then added to the aggregate, the neighboring
bonds are updated to reflect the new connectivity, and
the process is repeated. Typical simulations appear in
Fig. 6. When the invading and displaced media have
identical conductivities, dense Eden-like aggregates such
as the example in Fig. 6(a) result. The opposite extreme,

FIG. 5. Assignment of resistor values in a small section of a
network simulation. Heavy lines represent aggregate bond with
conductance C,. Light lines represent bonds between nodes of
the surrounding medium, C,,. Dotted lines represent bonds be-
tween aggregate sites on different branches, C,. Circles denote
the “surface” of the aggregate as defined in the text. An exam-
ple of such a surface appears in Fig. 8.
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which corresponds to an inviscid fluid displacing a
viscous fluid, leads to open DLA-like structures as in Fig.
6(b). The structures emerging in these extreme limits of
conductivity contrast are not affected qualitatively by
variations in the conductivity contrast. In the first case,
currents naturally flow radially inward, bypassing the in-
terbranch bonds, and in the latter the branches are so
separated that very few of interbranch bonds are ever
created. Where conductivity anisotropy plays a role is in
the transition from Eden-like to DLA-like structures.

The triangular lattice was selected to minimize the
effects of lattice anisotropy both on the calculation of the
potential and also on the morphology of the aggregate
[23]. These effects could be further reduced by perform-
ing off-lattice simulations, but at a considerably higher
computational cost. Numerical techniques such as simul-
taneous overrelaxation and Chebychev acceleration do
not work well for these simulations because the conduc-
tance of the network changes at every step, requiring cor-
responding changes in the acceleration parameters. We
do, however, decompose the triangular lattice into four
sublattices such that the potential at each node in any
one sublattice depends only upon the potentials in the
other three. Each relaxation step then consists of calcu-
lating corrections for each sublattice in sequence.

The growth algorithm imposes two additional condi-
tions: no branches are allowed to form between existing
branches, and no bonds or aggregate sites are allowed to
disappear. The inability to form bridges or disconnected
islands renders these simulations less than ideal represen-
tations of viscous fingering in porous media [12] but is en-
tirely appropriate to electrochemical deposition and
dielectric breakdown. These issues arise in the simula-
tions, as they do in experiments, because field gradients
developing around circuitous branches can favor a
transfer of material to shorter neighboring branches.
This is handled in our simulations by not counting such
negative surface currents when determining a bond’s
growth probability.

An aggregate’s interface is defined as the locus of
centers of bonds connecting the aggregate to the outside
lattice. These centers appear as circles in Fig. 5. This
definition ensures that the interface, described in polar
coordinates as r,(6), does not cross itself although it may
be a multiple-valued function of 6. Because aggregates
growing in the dense radial regime should have
few overhangs, such multiple-valued regions negligibly
affect Fourier descriptors of r,(6) at long wavelengths.
Single-valued representations such as the curvature
parametrized by arc length of the interface overem-
phasize short-wavelength features and so were not used
in this analysis.

We find that fast-Fourier-transform (FFT) algorithms
are not appropriate for measuring amplitudes of long-
wavelength modes: numerical errors amassed in treating
individual branches swamp the relatively weak features of
the overall envelope. Instead, we calculate each mode’s
amplitude independently:

N )
S (r—rge™%, (12)

i=1

2
5,e N
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FIG. 6. Typical simulations of evolving resistor bond networks. The location of the outer boundary is drawn with heavy lines and
has a lattice metric radius of 100 bonds. Examples (a) and (b) demonstrate the behavior of the growth algorithm in the Eden (§=1)
and DLA (£=10°) limits, respectively. Although both aggregates were grown with ¥ =1, the same qualitative results appear for all
values of y. Examples (c)—(f) demonstrate the role of current confinement in stabilizing the aggregate envelope. (c) and (d) are grown
in the isotropic limit ¥ =1, while (e) and (f) are grown in the anisotropic limit y =107% (c) Unstable: £=4. (d) Unstable: £=7. (e)
Dense radial: £=4. (f) Unstable: £=7. All aggregates except (b) are shown at the stage where they contain 6000 bonds. Example
(b) contains 3461 bonds.




48 DISSIPATION, GEOMETRY, AND THE STABILITY OF THE . . . 3847

where r; and 0; are the polar coordinates of the ith inter-

_facial point measured with respect to the center. The
average is taken over N interfacial points, and the radius
of the undistorted interface is estimated [24] as

N
=L S x| -
2 “, ivi iYi

Here x; and y; are the Cartesian coordinates of the inter-
face locations. Unlike the FFT approach, Eq. (12) is
readily amenable to irregularly gridded data and returns
its amplitude in units of the bond length.

B. Isotropic limit

The aggregates in Figs. 6(a)-6(d) grew with inter-
branch conductance equal to the conductance of the
branches themselves: C,=C,. The example in Fig. 6(a)
corresponds to the case in which there is no conductivity
contrast. This perfectly stable aggregate nonetheless has
some surface roughness due to stochastic noise in the
growth process. Typical distortion amplitudes at low
mode numbers fall around half a bond length as mea-
sured with Eq. (12). As the conductance of the aggregate
bonds is increased, from C,=1 in Fig. 6(a) to C,=10% in
Fig. 6(b), the interface becomes increasingly disordered.
The limit of large conductivity contrast corresponds to
diffusion-limited aggregation, and the pattern in Fig. 6(b)
displays the open ramified structure typical of DLA. A
detailed analysis of the scaling behavior of such aggre-
gates is not warranted because of their small size. The
marginal stability curves in Fig. 4(a) indicate that for
conductivity contrasts as small as £=1.5, the interfaces
of aggregates should already be unstable. Indeed, those
aggregates in Figs. 6(c) with £=4 and 6(d) with £=7 al-
ready show a large and increasing degree of openness and
disorder.

Figure 7(a) shows {§,, ) as a function of filling fraction,
x=ry/R, for aggregates such as those in Figs. 6(a)-6(d),
grown in the limit of small conductivity anisotropy. Here
the angular brackets indicate averages over modes 4—10
and over one or two instances of aggregates grown in-
dependently under identical conditions. These mode
numbers are selected as being representative of the long-
wavelength structure of the various interfaces (Fig. 8).
As predicted by the linear growth model, those aggre-
gates grown with conductance contrasts greater than
about 1.5 show rapidly diverging surface distortions at
long wavelengths. Quite a different story emerges from
growth in the strongly anisotropic limit.

C. Anisotropic limif

Growth conditions for the aggregates in Figs. 6(e) and
6(f) correspond to those for Figs. 6(c) and 6(d) except for
their strong conductivity anisotropy: ¥ =10"2. Accord-
ing to the analysis of Sec. I, an aggregate such as that in
Fig. 6(e) with £=4 should become stable at long wave-
lengths. After some scrutiny, this aggregate looks quali-
tatively rounder and smoother than its isotropic counter-
part in Fig. 6(c). By increasing the conductivity contrast
to £=7, we cross over to the disordered regime, as the
aggregate in Fig. 6(f) shows.

FIG. 7. Amplitudes of long-wavelength modes, ¢§,, ), mea-
sured with Eq. (12) and averaged over mode numbers 4—10 and
over one or two realizations of each set of growth conditions.
Data are plotted as a function of aggregate size x =ry/R and
conductivity contrast, & (a) Isotropic limit: y=4'C,/C,, =1.
(b) Anisotropic limit: ¥ =10"2. Those measurements with dis-
tortion amplitudes (5,,) larger than a single bond length are
considered unstable and are plotted with a heavy line.

FIG. 8. Interface of the aggregate in Fig. 6(f) overlaid with
an interface reconstructed from Fourier modes 4-10.
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We identify aggregates such as that in Fig. 6(e) with
the dense radial morphology. This pattern appears con-
siderably less stable at long wavelengths than the experi-
mental realization in Fig. 1 because the simulations pro-
duce comparatively small aggregates. In both experiment
and simulation, interfacial roughness arises from stochas-
tic noise. If the amplitude of this noise-driven roughness
remains constant as the aggregate grows, then eventually
the interfacial roughness will become negligible on the
scale of the entire pattern.

The identification of aggregates such as that in Fig. 6(e)
with the dense radial morphology rests on the measure-
ments of low-mode-number distortions plotted in Fig.
7(b). Again taking 5,,) =1 to be the distortion ampli-
tude at which an interface is considered unstable, we see
that runs with £ smaller than 4 remain stable throughout
their growth. Not only are these distortion amplitudes
small, but also they do not grow. The absolute growth
rate of perturbations remains vanishingly small for runs
with & smaller than 5 or 6. All of these aggregates are
dense radial. As & is increased, aggregates become in-
creasingly unstable at smaller sizes. This crossover from
stable to unstable growth as a function of growth condi-
tions agrees with the crossover predicted in the preceding
analysis as depicted in Fig. 4(b).

IV. DISCUSSION

Quantitative analysis of the evolution of interfacial dis-
tortions in our simulations supports our contention that
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dissipation, geometry, and current confinement all con-
tribute to the stability of the dense radial morphology. In
particular, the crossover predicted by our growth model
to occur for anisotropic aggregates near £=5 is in very
good agreement with the measured evolution of long-
wavelength distortions in our simulations. The interfa-
cial stability observed for those simulations we identify
with the dense radial morphology leads us to project that
larger simulations would more visibly resemble the dense
radial patterns realized experimentally.

We have seen no unequivocal evidence of the dynamic
crossover from early stage disorder to later stage dense
radial structure in any of our simulations. Nor have our
simulations revealed the second dynamical crossover to
late stage disorder. We believe that the apparent absence
of these transitions also is due to the very limited scale
and coarse graining of our simulations and look forward
to experimental studies which should provide superior
tests of these predictions.
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FIG. 1. Quasi-two-dimensional cadmium electrodeposit
grown according to the method of Refs. [3,4]. The pattern is
approximately 2 cm in diameter and 200 pm thick. It grew
from a grounded cathode wire 0.1 mm in diameter. The outer
ring anode, not visible in this picture, is 6.3 cm in diameter and
was held at 20.26 V during the deposition. A film of 0.1M
CdSO, aqueous solution provided the growth medium.



